Skip to main contentdfsdf

    • The failure of SuperMemo to transform learning uncannily repeats the earlier failures of cognitive psychology to influence teachers and students. Our capacity to learn is amazingly large. But optimal learning demands a kind of rational control over ourselves that does not come easily. Even the basic demand for regularity can be daunting. If you skip a few days, the spacing effect, with its steady march of sealing knowledge in memory, begins to lose its force. Progress limps. When it comes to increasing intelligence, our brain is up to the task and our technology is up to the task. The problem lies in our temperament.
    • Wozniak's days are blocked into distinct periods: a creative period, a reading and studying period, an exercise period, an eating period, a resting period, and then a second creative period. He doesn't get up at a regular hour and is passionate against alarm clocks. If excitement over his research leads him to work into the night, he simply shifts to sleeping in the day. When he sits down for a session of incremental reading, he attends to whatever automatically appears on his computer screen, stopping the instant his mind begins to drift or his comprehension falls too low and then moving on to the next item in the queue. SuperMemo graphs a distribution of priorities that he can adjust as he goes. When he encounters a passage that he thinks he'll need to remember, he marks it; then it goes into a pattern of spaced repetition, and the information it contains will stay in his brain indefinitely.

    4 more annotations...

    • By the mid-'90s, with SuperMemo growing more and more popular, Wozniak felt that his ability to rationally control his life was slipping away. "There were 80 phone calls per day to handle. There was no time for learning, no time for programming, no time for sleep," he recalls. In 1994, he disappeared for two weeks, leaving no information about where he was. The next year he was gone for 100 days. Each year, he has increased his time away. He doesn't own a phone. He ignores his email for months at a time. And though he holds a PhD and has published in academic journals, he never attends conferences or scientific meetings.
    • Instead, Wozniak has ridden SuperMemo into uncharted regions of self-experimentation. In 1999, he started making a detailed record of his hours of sleep, and now he's working to correlate that data with his daily performance on study repetitions. Psychologists have long believed there's a correlation between sleep and memory, but no mathematical law has been discovered. Wozniak has also invented a way to apply his learning system to his intake of unstructured information from books and articles, winnowing written material down to the type of discrete chunks that can be memorized, and then scheduling them for efficient learning. He selects a short section of what he's reading and copies it into the SuperMemo application, which predicts when he'll want to read it again so it sticks in his mind. He cuts and pastes completely unread material into the system, assigning it a priority. SuperMemo shuffles all his potential knowledge into a queue and presents it to him on a study screen when the time is right. Wozniak can look at a graph of what he's got lined up to learn and adjust the priority rankings if his goals change.

         

      These techniques are designed to overcome steep learning curves through automated steps, like stairs on a hill. He calls it incremental reading, and it has come to dominate his intellectual life. Wozniak no longer wastes time worrying that he hasn't gotten to some article he wants to read; once it's loaded into the system, he trusts his algorithm to apportion it to his consciousness at the appropriate time.

    3 more annotations...

    • The most popular learning systems sold today — for instance, foreign language software like Rosetta Stone — cheerfully defy every one of the psychologists' warnings. With its constant feedback and easily accessible clues, Rosetta Stone brilliantly creates a sensation of progress. "Go to Amazon and look at the reviews," says Greg Keim, Rosetta Stone's CTO, when I ask him what evidence he has that people are really remembering what they learn. "That is as objective as you can get in terms of a user's sense of achievement." The sole problem here, from the psychologists' perspective, is that the user's sense of achievement is exactly what we should most distrust.
    • The battle between lab-tested techniques and conventional pedagogy went on for decades, and it's fair to say that the psychologists lost. All those studies of human memory in the lab — using nonsense syllables, random numbers, pictures, maps, foreign vocabulary, scattered dots — had so little influence on actual practice that eventually their irrelevance provoked a revolt. In the late '70s, Ulric Neisser, the pioneering researcher who coined the term cognitive psychology, launched a broad attack on the approach of Ebbinghaus and his scientific kin.

         

      "We have established firm empirical generalizations, but most of them are so obvious that every 10-year-old knows them anyway," Neisser complained. "We have an intellectually impressive group of theories, but history offers little confidence that they will provide any meaningful insight into natural behavior." Neisser encouraged psychologists to leave their labs and study memory in its natural environment, in the style of ecologists. He didn't doubt that the laboratory theories were correct in their limited way, but he wanted results that had power to change the world.

    1 more annotation...

    • The problem of forgetting might not torment us so much if we could only convince ourselves that remembering isn't important. Perhaps the things we learn — words, dates, formulas, historical and biographical details — don't really matter. Facts can be looked up. That's what the Internet is for. When it comes to learning, what really matters is how things fit together. We master the stories, the schemas, the frameworks, the paradigms; we rehearse the lingo; we swim in the episteme.

         

      The disadvantage of this comforting notion is that it's false. "The people who criticize memorization — how happy would they be to spell out every letter of every word they read?" asks Robert Bjork, chair of UCLA's psychology department and one of the most eminent memory researchers. After all, Bjork notes, children learn to read whole words through intense practice, and every time we enter a new field we become children again. "You can't escape memorization," he says. "There is an initial process of learning the names of things. That's a stage we all go through. It's all the more important to go through it rapidly." The human brain is a marvel of associative processing, but in order to make associations, data must be loaded into memory.

    • Once we drop the excuse that memorization is pointless, we're left with an interesting mystery. Much of the information does remain in our memory, though we cannot recall it. "To this day," Bjork says, "most people think about forgetting as decay, that memories are like footprints in the sand that gradually fade away. But that has been disproved by a lot of research. The memory appears to be gone because you can't recall it, but we can prove that it's still there. For instance, you can still recognize a 'forgotten' item in a group. Yes, without continued use, things become inaccessible. But they are not gone."

    2 more annotations...

    • In the late 1800s, a German scientist named Hermann Ebbinghaus made up lists of nonsense syllables and measured how long it took to forget and then relearn them. (Here is an example of the type of list he used: bes dek fel gup huf jeik mek meun pon daus dor gim ke4k be4p bCn hes.) In experiments of breathtaking rigor and tedium, Ebbinghaus practiced and recited from memory 2.5 nonsense syllables a second, then rested for a bit and started again. Maintaining a pace of rote mental athleticism that all students of foreign verb conjugation will regard with awe, Ebbinghaus trained this way for more than a year. Then, to show that the results he was getting weren't an accident, he repeated the entire set of experiments three years later. Finally, in 1885, he published a monograph called Memory: A Contribution to Experimental Psychology. The book became the founding classic of a new discipline.
    • Ebbinghaus discovered many lawlike regularities of mental life. He was the first to draw a learning curve. Among his original observations was an account of a strange phenomenon that would drive his successors half batty for the next century: the spacing effect.

         

      Ebbinghaus showed that it's possible to dramatically improve learning by correctly spacing practice sessions. On one level, this finding is trivial; all students have been warned not to cram. But the efficiencies created by precise spacing are so large, and the improvement in performance so predictable, that from nearly the moment Ebbinghaus described the spacing effect, psychologists have been urging educators to use it to accelerate human progress. After all, there is a tremendous amount of material we might want to know. Time is short.

    8 more annotations...

    • The winter sun sets in mid-afternoon in Kolobrzeg, Poland, but the early twilight does not deter people from taking their regular outdoor promenade. Bundled up in parkas with fur-trimmed hoods, strolling hand in mittened hand along the edge of the Baltic Sea, off-season tourists from Germany stop openmouthed when they see a tall, well-built, nearly naked man running up and down the sand.

         

      "Kalt? Kalt?" one of them calls out. The man gives a polite but vague answer, then turns and dives into the waves. After swimming back and forth in the 40-degree water for a few minutes, he emerges from the surf and jogs briefly along the shore. The wind is strong, but the man makes no move to get dressed. Passersby continue to comment and stare. "This is one of the reasons I prefer anonymity," he tells me in English. "You do something even slightly out of the ordinary and it causes a sensation."

    • Piotr Wozniak's quest for anonymity has been successful. Nobody along this string of little beach resorts recognizes him as the inventor of a technique to turn people into geniuses. A portion of this technique, embodied in a software program called SuperMemo, has enthusiastic users around the world. They apply it mainly to learning languages, and it's popular among people for whom fluency is a necessity — students from Poland or other poor countries aiming to score well enough on English-language exams to study abroad. A substantial number of them do not pay for it, and pirated copies are ubiquitous on software bulletin boards in China, where it competes with knockoffs like SugarMemo.

    2 more annotations...

1 - 6 of 6
20 items/page
List Comments (0)