Skip to main contentdfsdf

Jurasovaib's List: From Pythagoras to Einstein

    • Pythagorean proof
    • he Pythagorean Theorem was known long before Pythagoras, but he may well have been the first to prove it.[6] In any event, the proof attributed to him is very simple, and is called a proof by rearrangement.

       

      The two large squares shown in the figure each contain four identical triangles, and the only difference between the two large squares is that the triangles are arranged differently. Therefore, the white space within each of the two large squares must have equal area. Equating the area of the white space yields the Pythagorean Theorem, Q.E.D.[7]

       

      That Pythagoras originated this very simple proof is sometimes inferred from the writings of the later Greek philosopher and mathematician Proclus.[8] Several other proofs of this theorem are described below, but this is known as the Pythagorean one.

    1 more annotation...

    • The speed of light in vacuum, commonly denoted c, is a universal physical constant important in many areas of physics. Its value is exactly 299,792,458 metres per second, a figure that is exact because the length of the metre is defined from this constant and the international standard for time.[1]
    • The first quantitative estimate of the speed of light was made in 1676 by Rømer (see Rømer's determination of the speed of light).[83][84] From the observation that the periods of Jupiter's innermost moon Io appeared to be shorter when the Earth was approaching Jupiter than when receding from it, he concluded that light travels at a finite speed, and estimated that it takes light 22 minutes to cross the diameter of Earth's orbit. Christiaan Huygens combined this estimate with an estimate for the diameter of the Earth's orbit to obtain an estimate of speed of light of 220000 km/s, 26% lower than the actual value.[105]

    2 more annotations...

    • He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect".[5]
    • He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect".[5]

    1 more annotation...

    • Pythagoras of Samos (/pɪˈθæɡərəs/; Ancient Greek: Πυθαγόρας ὁ Σάμιος Pythagóras ho Sámios “Pythagoras the Samian”, or simply Πυθαγόρας; Πυθαγόρης in Ionian Greek; c. 570 BC – c. 495 BC)[1][2] was an Ionian Greek philosopher, mathematician, and founder of the religious movement called Pythagoreanism.
    • Since the fourth century AD, Pythagoras has commonly been given credit for discovering the Pythagorean theorem, a theorem in geometry that states that in a right-angled triangle the area of the square on the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares of the other two sides—that is, a^2 + b^2 = c^2

    3 more annotations...

    • Order of magnitude[edit]

       

      Rømer starts with an order of magnitude demonstration that the speed of light must be so great that it takes much less than one second to travel a distance equal to Earth's diameter.

       

      The point L on the diagram represents the second quadrature of Jupiter, when the angle between Jupiter and the Sun (as seen from Earth) is 90°.[note 6] Rømer assumes that an observer could see an emergence of Io at the second quadrature (L), and also the emergence which occurs after one orbit of Io around Jupiter (when the Earth is taken to be at point K, the diagram not being to scale), that is 42½ hours later. During those 42½ hours, the Earth has moved further away from Jupiter by the distance LK: this, according to Rømer, is 210 times the Earth's diameter.[note 7] If light travelled at a speed of one Earth-diameter per second, it would take 3½ minutes to travel the distance LK. And if the period of Io's orbit around Jupiter were taken as the time difference between the emergence at L and the emergence at K, the value would be 3½ minutes longer than the true value.

       

      Rømer then applies the same logic to observations around the first quadrature (point G), when Earth is moving towards Jupiter. The time difference between an immersion seen from point F and the next immersion seen from point G should be 3½ minutes shorter than the true orbital period of Io. Hence, there should be a difference of about 7 minutes between the periods of Io measured at the first quadrature and those measured at the second quadrature. In practice, no difference is observed at all, from which Rømer concludes that the speed of light must be very much greater than one Earth-diameter per second.[5]

    • However Rømer also realised that any effect of the finite speed of light would add up over a long series of observations, and it is this cumulative effect that he announced to the Royal Academy of Sciences in Paris. The effect can be illustrated with Rømer's observations from spring 1672.

       

      Jupiter was in opposition on 2 March 1672: the first observations of emergences were on 7 March (at 07:58:25) and 14 March (at 09:52:30). Between the two observations, Io had completed four orbits of Jupiter, giving an orbital period of 42 hours 28 minutes 31¼ seconds.

       

      The last emergence observed in the series was on 29 April (at 10:30:06). By this time, Io had completed thirty orbits around Jupiter since 7 March: the apparent orbital period is 42 hours 29 minutes 3 seconds. The difference seems minute – 32 seconds – but it meant that the emergence on 29 April was occurring a quarter-hour after it would have been predicted. The only alternative explanation was that the observations on 7 and 14 March were wrong by two minutes.

1 - 10 of 10
20 items/page
List Comments (0)